MST neurons code for visual motion in space independent of pursuit eye movements.
نویسندگان
چکیده
When a person tracks a small moving object, the visual images in the background of the visual scene move across his/her retina. It, however, is possible to estimate the actual motion of the images despite the eye-movement-induced motion. To understand the neural mechanism that reconstructs a stable visual world independent of eye movements, we explored areas MT (middle temporal) and MST (medial superior temporal) in the monkey cortex, both of which are known to be essential for visual motion analysis. We recorded the responses of neurons to a moving textured image that appeared briefly on the screen while the monkeys were performing smooth pursuit or stationary fixation tasks. Although neurons in both areas exhibited significant responses to the motion of the textured image with directional selectivity, the responses of MST neurons were mostly correlated with the motion of the image on the screen independent of pursuit eye movement, whereas the responses of MT neurons were mostly correlated with the motion of the image on the retina. Thus these MST neurons were more likely than MT neurons to distinguish between external and self-induced motion. The results are consistent with the idea that MST neurons code for visual motion in the external world while compensating for the counter-rotation of retinal images due to pursuit eye movements.
منابع مشابه
Discharge characteristics of pursuit neurons in MST during vergence eye movements.
For small objects moving smoothly in space close to the observer, smooth pursuit and vergence eye movements maintain target images near the foveae to insure high-resolution processing of visual signals about moving objects. Signals for both systems must be synthesized for pursuit-in-three-dimensions (3D). Recent studies have shown that responses of the majority of pursuit neurons in the frontal...
متن کاملModulation of visual signals in macaque MT and MST neurons during pursuit eye movement.
Retinal image motion is produced with each eye movement, yet we usually do not perceive this self-produced "reafferent" motion, nor are motion judgments much impaired when the eyes move. To understand the neural mechanisms involved in processing reafferent motion and distinguishing it from the motion of objects in the world, we studied the visual responses of single cells in middle temporal (MT...
متن کاملRelationship between extraretinal component of firing rate and eye speed in area MST of macaque monkeys.
We have isolated extraretinal and retinal components of firing during smooth pursuit eye movements in the medial-superior-temporal area (MST) in the extrastriate visual cortex. Awake macaque monkeys tracked spots in total darkness to eliminate image motion inputs from the background. For 300 ms during sustained tracking at different speeds, the target was stabilized on the moving eye, practical...
متن کاملDischarge properties of MST neurons that project to the frontal pursuit area in macaque monkeys.
We have used antidromic activation to determine the functional discharge properties of neurons that project to the frontal pursuit area (FPA) from the medial-superior temporal visual area (MST). In awake rhesus monkeys, MST neurons were considered to be activated antidromically if they emitted action potentials at fixed, short latencies after stimulation in the FPA and if the activation passed ...
متن کاملMST neuronal responses to heading direction during pursuit eye movements.
As you move through the environment, you see a radial pattern of visual motion with a focus of expansion (FOE) that indicates your heading direction. When self-movement is combined with smooth pursuit eye movements, the turning of the eye distorts the retinal image of the FOE but somehow you still can perceive heading. We studied neurons in the medial superior temporal area (MST) of monkey visu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 97 5 شماره
صفحات -
تاریخ انتشار 2007